If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-240=0
a = 3; b = 2; c = -240;
Δ = b2-4ac
Δ = 22-4·3·(-240)
Δ = 2884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2884}=\sqrt{4*721}=\sqrt{4}*\sqrt{721}=2\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{721}}{2*3}=\frac{-2-2\sqrt{721}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{721}}{2*3}=\frac{-2+2\sqrt{721}}{6} $
| 5n–3=2n+6-5n | | 9(3x+6)=6(-8x-1) | | 15x-36-8x-1=3x+2 | | 9a+-1a-8a=1 | | 2(9u-3u+6+2u-5)=-30 | | 3 1/7 x = 66 | | (b+6)(b+2)=0 | | 3 1 x = 66 7 | | 9+x+6=-2x-4(-4) | | 2(3y+10+4Y=12 | | 7z-55=8+7(-5z+3) | | -(6x+15)=-3 | | 7y=-33 | | 8b+6b-19+6b=1 | | (3x-30)+90+x=180 | | 3(x-10)+2x=25 | | 1/4+2x=3/5 | | 3(15x-10)=12x+3 | | 4t+7=-5 | | 3(n+4=21 | | 38=m15 | | 19x-6=12x+15 | | 7x-43=6x-5 | | 7k-2k+2k+3k=20 | | 90+5x=189 | | 3g+15=30 | | -10a-(-5a+7)=43 | | 4(-3x+2)=44 | | 5(3x-12)=4x-5 | | 3(n+12)=21 | | 3/10x-12=3/4x-5 | | 6t^2-5t-11=0 |